一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.
.解不等式,并把它的解集在数轴上表示出来.
.如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且沿DE折叠后点O落在边AB上处?
.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足的概率.
.如图,A、B是上的两点,,点D为劣弧的中点.(1)求证:四边形AOBD是菱形;(2)延长线段BO至点P,交于另一点C,且BP=3OB,求证:AP是的切线.
、如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,点A、B的坐标分别为(1)画出绕点O顺时针旋转后的;(2)点的坐标为_______;(3)四边形的面积为_______.