为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的"您最关心孩子哪方面成长"的主题调查,调查设置了"健康安全"、"日常学习"、"习惯养成"、"情感品质"四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.
(1)补全条形统计图.
(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子"情感品质"方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?
已知AB∥CD,BE、CF平分∠ABC,∠BCD.探索BE与CF的位置关系,并说明理由.
乘法公式的探究及应用. (1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式); (3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).
先化简,再求值(m﹣2n)(m+2n)﹣,其中m=,n=﹣1.
阅读下面材料: 小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF, 求证:BE+CF>EF. 小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2). 参考小明思考问题的方法,解决问题: 如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、BE、FC之间的数量关系?并证明你的猜想.
在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3. (1)当直线l经过D点时,求点D的坐标及k的值; (2)当直线l与正方形有两个交点时,直接写出k的取值范围.