已知向量=(1,2),=(1,0),=(3,4),若λ为实数,(+λ)⊥,则λ的值为( )
分析法是从要证的不等式出发,寻求使它成立的( )
证明命题:“f(x)=ex+在(0,+∞)上是增函数”,现给出的证法如下:因为f(x)=ex+,所以f′(x)=ex﹣,因为x>0,所以ex>1,0<<1,所以ex﹣>0,即f′(x)>0,所以f(x)在(0,+∞)上是增函数,使用的证明方法是( )
对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“可构造三角形函数”.以下说法正确的是( )
定义一种新运算:a⊗b=,已知函数f(x)=(1+)⊗3log2(x+1),若方程f(x)﹣k=0恰有两个不相等的实根,则实数k的取值范围为( )
一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是( )