已知,其中,,.(Ⅰ)求的单调递减区间;(Ⅱ)在中,角所对的边分别为,,,且向量与共线,求边长和的值.
如图,直三棱柱中, ,为中点,求直线与平面所成角的大小.(结果用反三角函数值表示)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆过点,两焦点为、,是坐标原点,不经过原点的直线与椭圆交于两不同点、.(1)求椭圆C的方程; (2) 当时,求面积的最大值;(3) 若直线、、的斜率依次成等比数列,求直线的斜率.
本题共有2个小题,第1小题满分6分,第2个小题满分8分。已知.(1)当,时,若不等式恒成立,求的范围;(2)试证函数在内存在零点.
本题共有2个小题,第1小题满分6分,第2个小题满分8分。某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.