四面体ABCD中,,E、F分别是AD、BC的中点,且,,求证:平面ACD.
已知椭圆的方程为,双曲线的两条渐近线为,,过椭圆的右焦点作直线,使⊥,又l与交于点,设与椭圆的两个交点由上至下依次为.(1)当与夹角为60°,双曲线的焦距为4时,求椭圆的方程及离心率;(2)求的最大值.
已知抛物线的顶点在原点,焦点在轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.(1)求抛物线的标准方程;(2)与圆相切的直线交抛物线于不同的两点,若抛物线上一点满足,求的取值范围。
已知“,使等式成立”是真命题.(1)求实数的取值集合;(2)设不等式解集为,若是的必要条件,求实数的取值范围.
如图,已知椭圆,分别为椭圆的左、右焦点,为椭圆的上顶点,直线交椭圆于另一点.(1)若,求椭圆的离心率;(2)若,,求椭圆的方程.
设命题和是方程的两个根,不等式对任意实数恒成立;命题Q:函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.