选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).(Ⅰ)若曲线与曲线只有一个公共点,求的取值范围;(Ⅱ)当时,求曲线上的点与曲线上点的最小距离.
已知是满足下列性质的所有函数组成的集合:对于函数,使得对函数定义域内的任意两个自变量,均有成立. (1)已知函数,,判断与集合的关系,并说明理由; (2)已知函数,求实数的取值范围; (3)是否存在实数,使得,属于集合?若存在,求的取值范围,若不存在,请说明理由.
我校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地.如图,点在上,点在上,且点在斜边上.已知,米,米,.设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数). (1)试用表示,并求的取值范围; (2)求总造价关于面积的函数; (3)如何选取,使总造价最低(不要求求出最低造价).
设集合, , . (1)若,求实数的值; (2)若,且,求实数的值; (3)若,求实数的值.
已知集合,集合. (1)求集合与集合; (2)若,求实数的取值范围.
解关于的不等式:.