我校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地.如图,点在上,点在上,且点在斜边上.已知,米,米,.设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数).(1)试用表示,并求的取值范围;(2)求总造价关于面积的函数;(3)如何选取,使总造价最低(不要求求出最低造价).
解不等式.
已知函数的图像与直线有且仅有三个交点,交点的横坐标的最大值为,求证: .
设,.证明:当且仅当时,存在数列满足以下条件: (ⅰ),; (ⅱ)存在; (ⅲ),.
求满足下列关系式组的正整数解组的个数.
如题一图,是圆内接四边形.与的交点为,是弧上一点,连接并延长交于点,点分别在,的延长线上,满足,,求证:四点共圆.