如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如下图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
解方程:
已知关于x的一元二次方程有两个不相等的实数根,k为正整数. (1)求k的值; (2)当次方程有一根为零时,直线与关于x的二次函数的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标; (3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线与该新图象恰好有三个公共点,求b的值.
如图,已知∠ABC=90°,D是直线AB上的点,AD=BC. (1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明; (2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下: 根据所给信息解答下列问题: (1)请补全条形统计图并在图中标明相应数据; (2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人? (3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F. (1)求证:∠ABC=2∠CAF; (2)若AC=,CE:EB=1:4,求CE的长.