如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如下图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
如图,在⊙O中,弦AC与BD交于点E,AB=8,AE=6,ED=4,求CD的长.
已知:二次函数的图象过点A(2,-3),且顶点坐标为C(1,-4).(1)求此二次函数的表达式;(2)画出此函数图象,并根据函数图象写出:当时,y的取值范围.
解方程:
如图1,对于平面上不大于的∠MON,我们给出如下定义:若点P在∠MON的内部或边界上,作PE⊥OM于点E,PF⊥ON于点F,则称PE+PF为点P相对于∠MON的“点角距离”,记为.如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足5,点P运动形成的图形记为图形G.(1)满足条件的其中一个点P的坐标是 ,图形G与坐标轴围成图形的面积等于 ;(2)设图形G与x轴的公共点为点A,已知,,求的值;(3)如果抛物线经过(2)中的A,B两点,点Q在A,B两点之间的抛物线上(点Q可与A,B两点重合),求当取最大值时,点Q 的坐标.
如图,等边三角形ABC的边长为4,直线l经过点A并与AC垂直.当点P在直线l上运动到某一位置(点P不与点A重合)时,连接PC,并将△ACP绕点C按逆时针方向旋转得到△BCQ,记点P的对应点为Q,线段PA的长为m().(1)①∠QBC= ;② 如图1,当点P与点B在直线AC的同侧,且时,点Q到直线l的距离等于 ;(2)当旋转后的点Q恰好落在直线l上时,点P,Q的位置分别记为,.在图2中画出此时的线段及△,并直接写出相应m的值;(3)当点P与点B在直线AC的异侧,且△PAQ的面积等于时,求m的值.