已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若关于的不等式恒成立,求整数的最小值;(Ⅲ)若正实数满足,证明.
如图,直三棱柱的侧棱长为3,,且,、分别是棱、上的动点,且 (1)证明:无论在何处,总有; (2)当三棱柱.的体积取得最大值时,求异面直线与所成角的余弦值.
已知向量,,,设函数. (1)求函数的最大值; (2)在中,角为锐角,角、、的对边分别为、、,,且的面积为3,,求的值.
已知函数,且在处的切线方程为. (1)求的解析式; (2)证明:当时,恒有; (3)证明:若,,且,则.
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
(1)求,的标准方程; (2)设斜率不为0的动直线与有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.
已知数列中,,. (1)求数列的通项公式; (2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.