选修4-1:几何证明选讲已知外接圆劣弧上的点(不与点、重合),延长至, 延长交的延长线于.(1)求证:;(2)求证:.
(本小题满分12分)过曲线上的一点作曲线的切线,交轴于点;过作垂直于轴的直线交曲线于,过作曲线的切线,交轴于点;过作垂直于轴的直线交曲线于,过作曲线的切线,交轴于点;……如此继续下去得到点列:,设的横坐标为.(Ⅰ)试用表示;(Ⅱ)证明:;(Ⅲ)证明:.
(本小题满分12分)已知双曲线的离心率,其一条准线方程为.(Ⅰ)求双曲线的方程;(Ⅱ)如题20图:设双曲线的左右焦点分别为,点为该双曲线右支上一点,直线与其左支 交于点,若,求实数的取值范围.
(本小题满分12分)设函数,其中为常数.(Ⅰ)当时,判断函数的单调性;(Ⅱ)若函数在其定义域上既有极大值又有极小值,求的取值范围.
(本小题满分13分)如题18图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点.(Ⅰ)证明:面;(Ⅱ)求二面角的大小.
(本小题满分13分)一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求:(Ⅰ)第2次摸出的恰好是白球的概率;(Ⅱ)摸2次摸出白球的个数的分布列与数学期望.