某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
(本题8分)某人去水果批发市场采购苹果,他看中了A、B两家苹果。这两家苹果品质一样,零售价都为6元/千克,批发价各不相同。 A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠。 B家的规定如下表:
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】 (1)如果他批发600千克苹果,则他在A 家批发需要 元,在B家批发需要 元; (2) 如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要 元,在B家批发需要 元(用含x的代数式表示); (3) 现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。
(本题6分)为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费. 9月份小明家里用水a吨(a>15吨). (1)请用代数式表示李老师9月份应交的水费; (2)当a=20时,求李老师9月份应交水费多少元?
(本题6分)已知在纸面上有一数轴(如图),折叠纸面。 (1)若1表示的点与-1表示的点重合,则-7表示的点与数表示的点重合; (2)若-1表示的点与5表示的点重合,回答以下问题: ①13表示的点与数表示的点重合; ②若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?
(本题5分)若新规定这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若(-2)※x=-2+ x , 求x的值
解方程: (1);(2).