如图,已知△ABC各顶点的坐标分别为A(-3,2),请你画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各顶点坐标.
如图,直角梯形OABC,OC边放在x轴上,OA边放在y轴上,OC=12,BC=8,∠C=60°,点P以1个单位的速度从O点出发沿OC运动,点Q以相同的速度从C点出发,沿CB—BA运动,当一点到达终点时,两点停止运动;(1)写出B点的坐标;(2)写出△OPQ的面积S与时间t之间的函数关系式(3)当Q点在BC边上运动时,是否存在t值,使△OPQ为等腰三角形?若有,求出此时的t 值.如果没有,请说明理由
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元,每个月的销售量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)在销量尽可能大的前提下,每件商品的售价定为多少元时,每个月的利润恰为2400元?
如图,双曲线:和直线:交于点A(2,1);(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出一次函数的值大于反比例函数的值的的取值范围;
如图,路灯A离地8米,身高1.6米的小王(CD)的影长DB与身高一样,现在他沿OD方向走10米,到达E处.(1)请画出小王在E处的影子EH;(2)求EH的长.
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣5,0,3.乙袋中的三张卡片所标的数值为﹣1,2,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第二象限的概率.