已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-(1)求A-2B;(2)若A-2B的值与x的取值无关,求y的值.
课本拓展 旧知新意: 我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢? 1.尝试探究: (1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?[来 2.初步应用: (2) 如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°, 则∠2-∠C=_______________; (3) 小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案__. 3.拓展提升: (4) 如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)
如图, AD为△ABC的中线,BE为△ABD的中线. (1)∠ABE=15°,∠BAD=36°,求∠BED的度数; (2) 作出△BED中DE边上的高,垂足为H; (3) 若△ABC面积为20,过点C作CF//AD交BA的延长线于点F,求△BCF的面积.(友情提示:两条平行线间的距离处处相等.)
如图,直线AB∥CD,∠GEB的平分线EF交CD与点F,∠HGF=40°,求∠EFD的度数.
在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点. (1)请画出平移后的△DEF,并求△DEF的面积; (2)若连接AD、CF,则这两条线段之间的关系是.
已知x+y=2,xy=-1,求下列代数式的值: (1)5x2+5y 2 ; (2)(x-y)2.