已知椭圆的下顶点为P(0,-1),到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求的最大值;(Ⅱ)若直线与圆相切,并与椭圆交于不同的两点A、B.当,且满足时,求面积的取值范围.
已知等差数列满足:,的前项和为。(1)求及;(2)令(其中为常数,且),求证数列为等比数列。
设函数,(1)若不等式的解集.求的值;(2)若求的最小值.
已知.(1)若a=0时,求函数在点(1,)处的切线方程;(2)若函数在[1,2]上是减函数,求实数a的取值范围;(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调区间.
设数列为等差数列,且a3=5,a5=9;数列的前n项和为Sn,且Sn+bn=2. (1)求数列,的通项公式;(2)若为数列的前n项和,求.