已知全集,,,求:(1);(2)
若函数=的图象过点(1)求函数的解析式;(2)求函数在区间上的最小值和最大值.
已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.
设全集求(1) (2)CU()
已知在棱长为的正方体中,为棱的中点,为正方形的中心,点分别在直线和上.(1)若分别为棱,的中点,求直线与所成角的余弦值;(2)若直线与直线垂直相交,求此时线段的长;(3)在(2)的条件下,求直线与所确定的平面与平面所成的锐二面角的余弦值.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量的概率分布;(3)求甲取到白球的概率.