如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.
已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.
(1)计算:(2﹣)+2;(2)解方程:2x2﹣2x+1=0.
有一个二次函数的图象,三位学生分别说出了它的一些特点.甲:对称轴是直线x=4;乙:与x轴两交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;请写出满足上述全部特点的二次函数解析式:
如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.(1)求证:∠CAD =∠CAB;(2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=.① 求抛物线的解析式;② 判断抛物线的顶点E是否在直线CD上,并说明理由;③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.