如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= .
在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 ▲ ;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示.)
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC="1.5" m,CD="8" m,则树高AB= ▲ .
若关于的方程有两个相等的实数根,则的值是 ▲ .
分解因式: ▲ .
如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4 ② S2+S4= S1+ S3 ③若S3="2" S1,则S4="2" S2 ④若S1= S2,则P点在矩形的对角线上其中正确的结论的序号是 ▲ (把所有正确结论的序号都填在横线上).