已知椭圆E的长轴长与焦距比为2:1,左焦点F(﹣2,0),一定点为P(﹣8,0).(1)求椭圆E的标准方程;(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.(3)求△P1P2F面积的最大值.
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
(1)列出频率分布表,并画出频率分布直方图;(2)估计纤度落在中的概率及纤度小于的概率是多少?(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
已知的展开式的二项式系数和比的展开式的系数和大992,求的展开式中:①二项式系数最大的项;②系数的绝对值最大的项。
已知,其中是自然常数,(1)讨论时, 的单调性、极值;(2)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
已知在区间[0,1]上是增函数,在区间上是减函数,又.(1) 求的解析式;(2) 若在区间(m>0)上恒有≤x成立,求m的取值范围。
已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B,(1) 求直线在轴上截距的取值范围;(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.