已知λ,μ为常数,且为正整数,λ≠1,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意的正整数n,Sn=λan﹣μ.记数列{an}中任意两不同项的和构成的集合为A.(1)证明:无穷数列{an}为等比数列,并求λ的值;(2)若2015∈A,求μ的值;(3)对任意的n∈N*,记集合Bn={x|3μ•2n﹣1<x<3μ•2n,x∈A}中元素的个数为bn,求数列{bn}的通项公式.
已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.(Ⅰ)证明:DN//平面PMB;(Ⅱ)证明:平面PMB平面PAD;
已知直线经过点,且斜率为.(Ⅰ)求直线的方程;(Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.
已知空间四边形ABCD的各边及对角线都相等,AC和平面BCD所成角的余弦值.
(本小题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其中≠0),过P点的切线交轴于点. (1)若,求证;(2)已知,过M点且斜率为的直线与抛物线交于A、B两点,若,求的值.
(本小题12分)已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.(1)求双曲线方程;(2)若点在双曲线上,求证:;(3)对于(2)中的点,求的面积.