已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,连接OC,OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°,求扇形OAC的面积
如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1). (1)请在网格图形中画出平面直角坐标系; (2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′; (3)写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;
解方程: (1) (2)
(本小题12分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0. (1)若b=5,则点A坐标是 ; (2)在(1)的条件下,若OQ=8,求线段BQ的长; (3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ= 求出点B的坐标.
(本小题13分)如图,抛物线y= -x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?
(本小题12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)