如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?(2)当O<x<2时,AD是否能平分△PQD的面积?若能,说出理由;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
(本题6分)在一次消防演习中,消防员架起一架25米长的云梯AB,如图斜靠在一面墙上,梯子底端B离墙角C的距离为7米。 (1)求这个梯子的顶端距地面的高度AC是多少? (2)如果消防员接到命令,按要求将梯子底部在水平方向滑 动后停在DE的位置上(云梯长度不变),测得BD长为8米,那么云梯的顶部在下滑了多少米?
(本题7分)如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(-1,5),B(-1,0),C(-4,3). (1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法) (2)写出A1、B1、C1的坐标; (3)求出△A1B1C1的面积.
(本题4分)已知 求x的值。
如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个 小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,…,请你根据以上操作方法得到的正方形的个数的规律完成各题. (1)将下表填写完整; (2)an =()(用含n的代数式表示); (3)按照上述方法,能否得到2015个正方形?如果能,请求出n;如果不能,请简述理由.
已知:如图∠ABC=30°,∠CBD=70°,BE是∠ABD的平分线,求∠DBE的度数.