已知函数.(1)当时,求函数的零点;(2)若函数有零点,求实数的取值范围.
设数列满足,设.[(1)求证:是等比数列;(2)设的前n项和为,求的最小值.
中,内角的对边分别是,已知成等比数列,且.(Ⅰ)求的值;(Ⅱ)设,求的值.
设,.(Ⅰ)若在上有两个不等实根,求的取值范围;(Ⅱ)若存在,使得对任意的,都有成立,求实数的取值范围.
如图,中心在坐标原点,焦点分别在轴和轴上的椭圆,都过点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点引两条斜率分别为的直线分别交,于点P,Q,当时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
已知数列{an}中,.(Ⅰ)求证:数列是等比数列;(Ⅱ)设是数列的前项和,求满足的所有正整数.