如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水位上升3米就达到警戒线CD,这时水面宽4米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?
小明到商店买东西,下面是他和售货员阿姨的对话:“我买这种牙膏支,这种牙刷把”.“一共元角”.付款后,小明说:“阿姨,这支牙膏我不要了,换一把牙刷吧!”“还需找你元”.从他们的对话中你能知道牙刷、牙膏的单价吗?
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.
计算:
某班组织20位同学去帮助某果园的果农采摘柑橘,任务是完成720千克柑橘的采摘、运送、包装三项工作,根据实际情况将三项工作的人员分配制成统计图,每人每小时完成某项工作量制作如下统计图:(1)按照如图的人员分配方案,已知各项工作完成的时间相等,那么问每人每小时运送、包装各多少千克柑橘并补全条形统计图;(2)若他们一起完成采摘任务后,小明同学将20人分成两组,一组运送,一组去包装,结果当负责运送的一组完成了任务时,另一个组在相等的时间内还有80千克的柑橘还没有包装,试问小明是怎样将人员分配的?
如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B的对应点B′落在y轴的正半轴上,已知OB=2, (1)求点B和点A′的坐标; (2)求经过点B和点B′的直线所对应的一次函数解析式,并判断点A是否在直线BB′上。