选修4-1:几何证明选讲如图,直线与相切于点,是的弦,的平分线交于点,连结,并延长与直线相交于点,若,.(1)求证:;(2)求弦的长.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式; (2)当为何值时,有最大值,并求出该最大值.
设, (1)解方程; (2)解不等式.
在区间内任取两个数(可以相等),分别记为和, (1)若、为正整数,求这两数中至少有一个偶数的概率; (2)若、,求、满足的概率.
(本小题满分14分) 设函数是定义在上的减函数,并且满足,, (1)求的值, (2)如果,求x的取值范围。
(本小题满分14分)已知点P(2,0),及圆C:x2+y2-6x+4y+4=0. (1)当直线l过点P且与圆心C的距离为1时,求直线l的方程; (2)设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.