设集合是的两个非空子集,如果存在一个从到的函数满足: 对任意当时,恒有,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )
如图,已知正三角形三个顶点都在半径为2的球面上,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值是()
把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()
设函数,则使得成立的的取值范围是()
一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如图所示,则余下部分的几何体的体积为()
设为单位向量,且,若以向量为两边的三角形的面积为,则的值为()