某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元.供大于求时,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(1)若商店一天购进该商品10件,求当天的利润(单位:元)关于当天需求量(单位:件,)的函数解析式;(2)商店记录了50天该商品的日需求量(单位:件),整理得下表:若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润的分布列及平均值.
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).(1)求sin 2α-tan α的值;(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f-2f2(x)在区间上的值域.
函数f(x)=Asin(ωx+φ) 的部分图像如图所示.(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.
设函数f(x)=sin x+sin.(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(2)不画图,说明函数y=f(x)的图像可由y=sin x的图像经过怎样的变化得到.
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.(1)当点E在棱AB上移动时,证明:D1E⊥A1D;(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.(1)求证:AC⊥DE;(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.