(本小题12分)已知函数的定义域是R,对任意实数x,y,均有,且当时,.(Ⅰ)证明:在R上是增函数;(Ⅱ)判断的奇偶性,并证明;(Ⅲ)若,求不等式的解集.
(本小题满分13分)等差数列的前项和为,已知为整数,且在前项和中最大.(Ⅰ)求的通项公式;(Ⅱ)设.(1)求证:; (2)求数列的前项和.
(本小题满分12分)已知函数满足,对任意,都有,且.(Ⅰ)求函数的解析式;(Ⅱ)若,使方程成立,求实数的取值范围.
(本小题满分12分)已知 .设的最小正周期为.(Ⅰ)求的单调增区间;(Ⅱ)当时,求的值域;(Ⅲ)求满足且的角的值.
(本小题满分12分)有一种新型的洗衣液,去污速度特别快.已知每投放且个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放个单位的洗衣液,分钟时水中洗衣液的浓度为(克/升),求的值 ;(Ⅱ)若投放个单位的洗衣液,则有效去污时间可达几分钟?
(本小题满分12分)在中,内角所对的边分别为,已知,.(Ⅰ)求的值;(Ⅱ)求的值.