国数学家洛萨提出了一个猜想:如果n为奇数 ,我们计算3n+1;如果n为偶数,我们除以2,不断重复这样的运算,经过有限步骤后一定可以得到1.例如,n=5时,经过上述运算,依次得到一列数5,16,8,4,2,1.( 注:计算到1结束),若n=12,得到一列数的和为 ;若小明同学对某个整数n,按照上述运算,得到一列数,已知第八个数为1,则整数n的所有可能取值中,最小的值为 .
如图,已知函数与y=ax2+bx(a<0,b>0)的图象交于点,点的纵坐标为-1,则关于的方程的解为▲.
如图,海边有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=96°,为了避免触礁,轮船P与A、B的张角∠APB的最大值为▲°.
不等式组的非负整数解是▲
某市教育机构为了全面了解本市2011年初中毕业学业考试学生对数学卷的答题情况,从全市40000名考生中随机抽查了10个试场(每个试场均有30名)学生进行分析,则这次调查中的样本的容量是▲。
计算: -4-6=▲ 。