(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D以AB上一点O为圆心作⊙O,使⊙O经过点A和点D。(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧所围成的阴影部分的面积(结果保留根号和)。
某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:
(1)求a,b的值; (2)补全频数分布直方图; (3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?
在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3). (1)求b,c的值,并写出该抛物线的对称轴和顶点坐标; (2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标; (3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.
如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=2CD•OE; (3)若cos∠BAD=,BE=,求OE的长.
已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元. (1)求y与x之间的关系式,并指出x的取值范围; (2)当总费用y最小时,求相应的x值及此时y的值.
如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N. (1)求证:△ABE≌△NCE; (2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.