(桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.
列方程(组 ) 解应用题
端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:
小王:该水果的进价是每千克22元;
小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.
根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?
某天,北海舰队在中国南海例行训练,位于 A 处的济南舰突然发现北偏西 30 ° 方向上的 C 处有一可疑舰艇,济南舰马上通知位于正东方向200海里 B 处的西安舰,西安舰测得 C 处位于其北偏西 60 ° 方向上,请问此时两舰距 C 处的距离分别是多少?
如图,在菱形 ABCD 中,点 M 、 N 分别在 AB 、 CB 上,且 ∠ ADM = ∠ CDN ,求证: BM = BN .
先化简,再求值: 1 + m − n m − 2 n ÷ n 2 − m 2 m 2 − 4 mn + 4 n 2 ,其中 m , n 满足 m 3 = − n 2 .
计算: ( 2021 − π ) 0 − | 3 − 12 | + 4 cos 30 ° − ( 1 4 ) − 1 .