(贺州)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.
为缓解油价上涨给出租车行业带来的成本压力,某巿自2012年5月1日起,调为缓解油价上涨给出租车行业带来的成本压力,某巿自2012年5月1日起,调整出租车运价,调整方案见下列表格及图像(其中a,b为常数).
设行驶路程x km时,调价前的运价为y1(元),调价后的运价为y2(元).如图,折线ABC表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题: 填空:a= , b= . 写出当x>3时,y1与x的函数关系式,并在上图中画出该函数的图象. 函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义;若不存在,请说明理由.
已知,如图,AB为⊙O的直径,弦DC延长线上有一点P,∠PAC=∠PDA.求证:PA是⊙O的切线;若AD=6,∠ACD=60°, 求⊙O的半径.
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点). 求:该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:用签字笔画AD∥BC(D为格点),连接CD. 线段AB的长为_ ,△ABC的面积为_ . 若E为BC中点,则tan∠CAE的值是_ .
解方程组: