(·湖南株洲)“皮克定理”是来计算原点在整点的多边形面积的公式,公式表达式为,孔明只记得公式中的S表示多边形的面积,和中有一个表示多边形那边上(含原点)的整点个数,另一个表示多边形内部的整点的个数,但不记得究竟是还是表示多边形内部的整点的个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部整点个数的字母是 ;并运用这个公式求得如图2中多边形的面积是 .
如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.
如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.
点 P(a,a-3)在第四象限,则a的取值范围是 .
分解因式: .
如图,在以点O为原点的直角坐标系中,一次函数的图象与x轴交于A、与y轴交于点B,点C在直线AB上,且OC=AB,反比例函数的图象经过点C,则所有可能的k值为.