(乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若,则称点Q为点P的“可控变点”. 例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3). (1)若点(﹣1,﹣2)是一次函数图象上点M的“可控变点”,则点M的坐标为 ; (2)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′的取值范围是,则实数a的取值范围是 .
一个 边形的内角和是 ,则 .
分解因式: .
如图,在 中, , , , , ,点 在 上, 交 于点 , 交 于点 ,当 时, .
阅读理解:引入新数 ,新数 满足分配律,结合律,交换律,已知 ,那么 .
在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .