(凉山州)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:①∠AEB的度数为 ___ ______; ②线段AD,BE之间的数量关系为 ___ ______. (2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D ,E在同一直线上,CM为△DCE中 DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分 ∠BAC. (1)求证:OC平分∠ACD; (2)求证:AB+CD=AC.
如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC. (1)求证:△ABE≌DCE; (2)当∠AEB=50°,求∠EBC的度数?
如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.
先化简,再求值:,其中x=3,y=1