(攀枝花)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值. 其中正确的结论个数为( ) A.4 B.3 C.2 D.1
已知9m=, 3n=;则下列结论正确的是( )
如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有 () A.4个B.3个C. 2个 D.1个
如图,已知△ABC中, DE∥BC,将△ADE沿DE翻折,使得点A落在平面内的A′处,若∠B=50°,则∠BDA′的度数是 ( )
若分解因式x2+mx-15=(x+3)(x+n),则m的值为( )
若a=(-2013)0,b=(-0.5),c=(-),则a、b、c的大小为 ()