(乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若,则称点Q为点P的“可控变点”. 例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3). (1)若点(﹣1,﹣2)是一次函数图象上点M的“可控变点”,则点M的坐标为 ; (2)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′的取值范围是,则实数a的取值范围是 .
方程的根是=
-4的绝对值是
通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为 .
已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是 .
如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是 .