(本小题满分12分)已知公比为的等比数列中,,前三项的和为.(Ⅰ)求数列的通项公式;(Ⅱ)若,设数列满足,,求使的的最小值.
已知函数f(x)=x3+ax2﹣a2x+2,a∈R.(1)若a<0时,试求函数y=f(x)的单调递减区间;(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.
如图,已知椭圆C:+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=﹣2分别交于点M、N,(1)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;(2)当点P运动时,以MN为直径的圆是否经过定点?请证明你的结论.
如图,在直三棱柱ABC﹣A1B1C1(侧棱和底面垂直的棱柱)中,平面A1BC⊥侧面A1ABB1,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F且满足2AE=EC,2BF=FA1.(1)求证:AB⊥BC;(2)求点E到直线A1B的距离;(3)求二面角F﹣BE﹣C的平面角的余弦值.
如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
已知锐角△ABC的三个内角A,B,C所对的边分别为a,b,c.已知(a﹣c)(sinA+sinC)=(a﹣b)sinB.(1)求角C的大小.(2)求cos2A+cos2B的取值范围.