已知:在直角坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度) (1)在备用图(1)中,画出△ABC向下平移4个单位长度得到△ABC,点C的坐标是________. (2)在备用图(2)中,以点B为位似中心,在网格内画出△ABC,使△ABC与△ABC位似,且位似比为2︰1,点C的坐标是________. (3)△ABC的面积是________平方单位.
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE.(结果保留两个有效数字)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70, Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)[来源
如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,AE∥CD交BC于E,求证:AB=EC
解方程:=-3
如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B. (1)求此抛物线的解析式; (2)若直线()将四边形ABCD面积二等分,求的值; (3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?
在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN. 设AM=x. (1)用含x的代数式表示△MNP的面积S; (2)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为y,试求关于y的函数表达式,并求 x为何值时,y的值最大,最大值是多少?