已知:在直角坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度) (1)在备用图(1)中,画出△ABC向下平移4个单位长度得到△ABC,点C的坐标是________. (2)在备用图(2)中,以点B为位似中心,在网格内画出△ABC,使△ABC与△ABC位似,且位似比为2︰1,点C的坐标是________. (3)△ABC的面积是________平方单位.
计算:(3x2)2•(-4y3)÷(6xy)2.
在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3am-1b2与anb2n-2是同类项且OA=m,OB=n. (1)m=;n=. (2)点C的坐标是. (3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.
如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H. (1)判断FH与BC的位置关系,并说明理由; (2)判断HG与DG的数量关系,并说明理由.
列一元一次不等式(组)解决实际问题: 元旦联欢会上,班级为同学们买了一批小礼物,如果每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,若已知班级学生的人数是奇数,试问这些小礼物共有多少个?
已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.