(·辽宁本溪)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)
解不等式组
化简-.
如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F. (1)试用含t的式子表示AE、AD的长; (2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由; (3)如图②,连接DE,当t为何值时,△DEF为直角三角形? (4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
观察下列等式: ①; ②; ③; …… 回答下列问题: (1)仿照上列等式,写出第n个等式:; (2)利用你观察到的规律,化简:; (3)计算:
如图,M、N是正方形ABCD边AB、CD上两动点,连接MN,将四边形BCNM沿MN折叠,使点B落在AD边上点E处、点C落在点F. (1)求证:BE平分∠AEF; (2)求证:C△EDG=2AB(注:C△EDG表示△EDG的周长)