(·辽宁辽阳)如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)
分解因式: (1) m2+4m+4 (2) a2b-4ab2+3b3 (3)(x2+y2)2-4x2y2
如图(十一)所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C. (1)求∠ACB的度数; (2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.
数学课堂上,徐老师出示一道试题: 如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN. (1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整. 证明:在AB上截取EA=MC,连结EM,得△AEM. ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2. 又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………① 又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM. ∴△BEM为等边三角形.∴∠6=60°. ∴∠5=180°-∠6=120°.………② ∴由①②得∠MCN=∠5. 在△AEM和△MCN中, ∵ ∴△AEM≌△MCN (ASA).∴AM=MN. (2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明) (3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛. 规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团宗人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.
某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计表及如图(九)所示的统计图.
请根据图表中的信息回答以下问题. (1)求a的值; (2)求这50名学生每人一周内的零花钱数额的众数和平均数.