(·辽宁葫芦岛)如图,直线与x轴交于点C,与y轴交于点B,抛物线经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的 A , B , C 三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.
(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;
(2)设选中 C 部门游三峡大坝的概率为 P 1 ,选中 B 部门游清江画廊或者三峡人家的概率为 P 2 ,请判断 P 1 , P 2 大小关系,并说明理由.
红光中学学生乘汽车从学校去研学旅行基地,以75千米 / 小时的平均速度,用时2小时到达.由于天气原因,原路返回时汽车平均速度控制在不低于50千米 / 小时且不高于60千米 / 小时的范围内,这样需要用 t 小时到达.求 t 的取值范围.
光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面 AB 与水杯下沿 CD 平行,光线 EF 从水中射向空气时发生折射,光线变成 FH ,点 G 在射线 EF 上,已知 ∠ HFB = 20 ° , ∠ FED = 45 ° ,求 ∠ GFH 的度数.
先化简,再求值: x 2 + 4 x + 4 x - 1 · x - 1 x + 2 - ( x - 1 ) 0 ,其中 x = 2020 .
在" - "" × "两个符号中选一个自己想要的符号,填入 2 2 + 2 × ( 1 □ 1 2 ) 中的□,并计算.