(·辽宁大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)(1)填空:n的值为___________;(2)求S关于x的函数关系式,并写出x的取值范围.
如图,点P在平行四边形ABCD的CD边上,连结BP并延长与AD的延长线交于点Q.(1)求证:△AQB∽△CBP;(2)当AB=2PC时,,求证:点D为AQ的中点.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
已知,图中正方形网格中每个小正方形边长为一个单位,现在网格中建立如图直角坐标系.(1)画出△ABC以点P为位似中心的位似图形△DEF,并且△DEF与△ABC的位似比为2 :1;(2)点A的对应点D的坐标是(_____ ,_____);(3)若△ABC另一位似图形的顶点坐标分别为(1,-3),(3,-1),(4,-4),则这组位似图形的位似中心坐标为(_____ ,_____).
为了了解重庆一中初2014级学生的跳绳成绩,琳琳老师随机调查了该年级开学体育模拟考试中部分同学的跳绳成绩,并绘制成了如图所示的条形统计图和扇形统计图.请你根据图中提供的信息完成下列各题:(1)求被调查同学跳绳成绩的中位数,并补全上面的条形统计图;(2)如果我校初三年级共有学生2025人,估计跳绳成绩能得18分的学生约有多少人?
已知关于x的方程x2+kx-2=0的一个解与方程的解相同.(1)求k的值;(2)求方程x2+kx-2=0的另一个解.