现定义运算“※”,对于任意实数a、b,都有a※b=a2-3a+b,如:3※5=32-3×3+5,若x※2=6,则实数x的值是 ___________.
在函数中,自变量的取值范围是 .
9的算术平方根是 .
【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FG∥BC.若AD=2,AE=1,DF=6,则EG= , FB:GC = .(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N. 【深入探究】 上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′,满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)
如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是 .
如图,直线,点坐标为(1,0),过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴于点;再过点作轴的垂线交直线于点 ,以原点为圆心,长为半径画弧交轴于点,…,按此做法进行下去,点 的坐标为 .