在平面直角坐标系中,抛物线C1:y=ax2-1(1)若抛物线过点A(1,0),求抛物线C1的解析式;(2)将(1)中的抛物线C1平移,使其顶点在直线L1:y=x上,得到抛物线C2,若直线L1与抛物线C2交于点C、D,求线段CD的长;(3)将(1)中的抛物线C1绕点A旋转1800后得到抛物线C3,直线y=kx-2k+4与抛物线C3只有唯一交点,求符合条件的直线l的解析式。
无锡市南长区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.求日均销售量p(桶)与销售单价x(元)的函数关系;若该经营部希望日均获利1350元,请你根据以上信息,就该桶装水的销售单价或销售数量,提出一个用一元二次方程解决的问题,并写出解答过程.
如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上. 若∠AOD =52º,求∠DEB的度数; 若OC=3,OA=5,求AB的长.
如图所示,A、B两个旅游点从2007年至2011年“五·一”的旅游人数变化情况分别用实线和虚线表示,根据图中所示解答以下问题:B旅游点的旅游人数相对上一年,增长最快的是哪一年?求A、B两个旅游点从2007到2011年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x (元)与游客人数y(万人)满足函数关系y=5-.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(5,3),O 为坐标原点,点E在线段BC上,若△AEO为等腰三角形, 求点E的坐标.(画出图象,不需要写计算过程)
如图,在△ABC中,O是AC上的一个动点(不与点A、C重合),过O点作直线MN//BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。(1)试说明:OE=OF。(2)当O点运动到何处时,四边形AECF是矩形?并证明你的结论。