(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.
已知二次函数y= x2 +4x+3.(1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)写出当x为何值时,y>0.
如图,,,,. (1)求的长;(2)求的值.
如图,是⊙O的直径,弦BC=5,∠BOC=60°,OE⊥AC,垂足为E.(1)求OE的长;(2)求劣弧AC的长.
已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.