(本小题满分12分)设函数y=是定义在上的减函数,并且满足=+ , (1)求的值; (2)若存在实数,使得,求的值; (3)若,求的取值范围.
已知数列满足,其中N*.(Ⅰ)设,求证:数列是等差数列,并求出的通项公式;(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
在中,分别为角所对的边,向量, ,且垂直.(Ⅰ)确定角的大小;(Ⅱ)若的平分线交于点,且,设,试确定关于的函数式,并求边长的取值范围.
已知函数在一个周期内的图象如图所示,点为图象的最高点,为图象与轴的交点,且三角形的面积为.(Ⅰ)求的值及函数的值域;(Ⅱ)若,求的值.
命题:不等式对一切实数都成立;命题:已知函数的图像在点处的切线恰好与直线平行,且在上单调递减。若命题或为真,求实数的取值范围。
己知函数.(I)若关于的不等式的解集不是空集,求实数的取值范围;(II)若关于的一元二次方程有实根,求实数的取值范围.