解方程(每题4分,共8分) (1) (2)-
某校为了增强学生的疫情防控意识,组织全校2000名学生进行了疫情防控知识竞赛.从中随机抽取了 n 名学生的竞赛成绩(满分100分),分成四组: A : 60 ⩽ x < 70 ; B : 70 ⩽ x < 80 ; C : 80 ⩽ x < 90 ; D : 90 ⩽ x ⩽ 100 ,并绘制出不完整的统计图:
(1)填空: n = ;
(2)补全频数分布直方图;
(3)抽取的这 n 名学生成绩的中位数落在 组;
(4)若规定学生成绩 x ⩾ 90 为优秀,估算全校成绩达到优秀的人数.
如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F 在 BC 的延长线上,且 BE = CF .
求证:(1) ΔABE ≅ ΔDCF ;
(2)四边形 AEFD 是平行四边形.
先化简,再求值: ( x 2 - 4 x 2 + 4 x + 4 + x x + 2 ) ⋅ 1 x - 1 ,其中 x = 3 .
计算: ( 2 - 1 ) 0 + | - 3 | - 27 3 + ( - 1 ) 2021 .
已知抛物线 y = a x 2 - 2 ax + c ( a , c 为常数, a ≠ 0 ) 经过点 C ( 0 , - 1 ) ,顶点为 D .
(Ⅰ)当 a = 1 时,求该抛物线的顶点坐标;
(Ⅱ)当 a > 0 时,点 E ( 0 , 1 + a ) ,若 DE = 2 2 DC ,求该抛物线的解析式;
(Ⅲ)当 a < - 1 时,点 F ( 0 , 1 - a ) ,过点 C 作直线 l 平行于 x 轴, M ( m , 0 ) 是 x 轴上的动点, N ( m + 3 , - 1 ) 是直线 l 上的动点.当 a 为何值时, FM + DN 的最小值为 2 10 ,并求此时点 M , N 的坐标.