某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?
如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心, PC为半径的⊙P与x轴的正半轴交于A、B两点,函数y=ax²+bx+4过A,B,C三点且AB=6. ⑴求⊙P的半径R的长; ⑵若点E在y轴上,且△ACE是等腰三角形,试写出所有点E的坐标;
如图,面积为8的矩形的边分别在轴,轴的正半轴上,点在反比例函数的图象上,且. (1)求反比例函数的解析式 (2)将矩形以点为旋转中心,顺时针旋转90°后得到矩形,反比例函数图象交于点,交于点.求的坐标. (3)△MBN的面积
如图,一次函数的图象与反比例函数的图象交于A(1,6),B(,2)两点. (1)求一次函数与反比例函数的解析式; (2)直接写出≤时的取值范围.
如图,已知二次函数的图像经过、、; (1)求二次函数的解析式; (2)画出二次函数的图像;
已知与成反比例,且当时, (1)求与之间的函数关系式; (2)求当时,的值。