如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.
(本题满分7分) 为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元. (1)求a,b的值; (2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.
(本题满分7分.)如图7,反比例函数的图像与一次函数的图象交于点A、B,其中A(1,2). (1)求m,b的值; (2)求点B的坐标,并写出时,的取值范围.
(本题满分7分)如图6,我市某展览厅东面有两个入口A、B,南面、西面、北面各有一个出口.小华任选择一个入口进入展览大厅,参观结束后任选一个出口离开. (1)利用树状图表示她从进入到离开的所有路径; (2) 她从入口A进入展厅并从北出口离开的概率是多少?
(本题满分7分)如图5,点P在平行四边形ABCD的CD边上,连结BP并延长与AD的延长线交于点Q. (1)求证:△DQP∽△CBP; (2)当△DQP≌△CBP,且AB=8时,求DP的长.
如图,在平面直角坐标系中,点A(-4,4),点B(-4,0),将△ABO绕原点O按顺时针方向旋转135°得到△。回答下列问题:(直接写结果) (1)∠AOB= °; (2)顶点A从开始到经过的路径长为; (3)点的坐标为