(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:<;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(本小题满分12分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
(本小题满分12分)青海玉树发生地震后,为重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自山东省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(Ⅰ)列举所有企业的中标情况;(Ⅱ)在中标的企业中,至少有一家来自山东省的概率是多少?
(本小题满分12分)设函数。(I)求函数单调区间; (II)若恒成立,求a的取值范围; (III)对任意n的个正整数(1)求证:(2)求证:
(本小题满分12分)已知是x,y轴正方向的单位向量,设, 且满足(1)、求点P(x,y)的轨迹E的方程.(2)、若直线过点且法向量为,直线与轨迹E交于两点.点,无论直线绕点怎样转动, 是否为定值?如果是,求出定值;如果不是,请说明理由.并求实数的取值范围;
(本小题满分12分)如图,在四棱锥中,底面四边长为1的菱形,, ,,为的中点,为的中点(Ⅰ)证明:直线;(Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。